Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Brain ; 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38533783

Exposure to repetitive head impacts (RHIs) in contact sports is associated with neurodegenerative disorders including chronic traumatic encephalopathy (CTE) which currently can be diagnosed only at postmortem. American football players are at higher risk of developing CTE given their exposure to RHIs. One promising approach for diagnosing CTE in vivo is to explore known neuropathological abnormalities at postmortem in living individuals using structural magnetic resonance imaging (MRI). MRI brain morphometry was evaluated in 170 male former American football players ages 45-74 years (n = 114 professional; n = 56 college) and 54 same-age unexposed asymptomatic male controls (n = 58 age range 45-74). Cortical thickness and volume of regions of interest were selected based on established CTE pathology findings and were assessed using FreeSurfer. Group differences and interactions with age and exposure factors were evaluated using a generalized least squares model. A separate logistic regression and independent multinomial model were performed to predict each Traumatic Encephalopathy Syndrome (TES) diagnosis core clinical features and provisional level of certainty for CTE pathology using brain regions of interest. Former college and professional American football players (combined) showed significant cortical thickness and/or volume reductions compared to unexposed asymptomatic controls in the hippocampus amygdala entorhinal cortex parahippocampal gyrus insula temporal pole and superior frontal gyrus. Post-hoc analyses identified group-level differences between former professional players and unexposed asymptomatic controls in the hippocampus amygdala entorhinal cortex parahippocampal gyrus insula and superior frontal gyrus. Former college players showed significant volume reductions in the hippocampus amygdala and superior frontal gyrus compared to the unexposed asymptomatic controls. We did not observe age-by-group interactions for brain morphometric measures. Interactions between morphometry and exposure measures were limited to a single significant positive association between the age of first exposure to organized tackle football and right insular volume. We found no significant relationship between brain morphometric measures and the TES diagnosis core clinical features and provisional level of certainty for CTE pathology outcomes. These findings suggest that MRI morphometrics detects abnormalities in individuals with a history of RHI exposure that resemble the anatomic distribution of pathological findings from postmortem CTE studies. The lack of findings associating MRI measures with exposure metrics (except for one significant relationship) or TES diagnosis and core clinical features suggests that brain morphometry must be complemented by other types of measures to characterize individuals with RHIs.

2.
Schizophr Bull ; 50(3): 496-512, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38451304

This article describes the rationale, aims, and methodology of the Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ). This is the largest international collaboration to date that will develop algorithms to predict trajectories and outcomes of individuals at clinical high risk (CHR) for psychosis and to advance the development and use of novel pharmacological interventions for CHR individuals. We present a description of the participating research networks and the data processing analysis and coordination center, their processes for data harmonization across 43 sites from 13 participating countries (recruitment across North America, Australia, Europe, Asia, and South America), data flow and quality assessment processes, data analyses, and the transfer of data to the National Institute of Mental Health (NIMH) Data Archive (NDA) for use by the research community. In an expected sample of approximately 2000 CHR individuals and 640 matched healthy controls, AMP SCZ will collect clinical, environmental, and cognitive data along with multimodal biomarkers, including neuroimaging, electrophysiology, fluid biospecimens, speech and facial expression samples, novel measures derived from digital health technologies including smartphone-based daily surveys, and passive sensing as well as actigraphy. The study will investigate a range of clinical outcomes over a 2-year period, including transition to psychosis, remission or persistence of CHR status, attenuated positive symptoms, persistent negative symptoms, mood and anxiety symptoms, and psychosocial functioning. The global reach of AMP SCZ and its harmonized innovative methods promise to catalyze the development of new treatments to address critical unmet clinical and public health needs in CHR individuals.


Psychotic Disorders , Schizophrenia , Humans , Prospective Studies , Adult , Prodromal Symptoms , Young Adult , International Cooperation , Adolescent , Research Design/standards , Male , Female
3.
Neurology ; 102(2): e208030, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38165330

BACKGROUND AND OBJECTIVES: Recent data link exposure to repetitive head impacts (RHIs) from American football with increased white matter hyperintensity (WMH) burden. WMH might have unique characteristics in the context of RHI beyond vascular risk and normal aging processes. We evaluated biological correlates of WMH in former American football players, including markers of amyloid, tau, inflammation, axonal injury, neurodegeneration, and vascular health. METHODS: Participants underwent clinical interviews, MRI, and lumbar puncture as part of the Diagnostics, Imaging, and Genetics Network for the Objective Study and Evaluation of Chronic Traumatic Encephalopathy Research Project. Structural equation modeling tested direct and indirect effects between log-transformed total fluid-attenuated inversion recovery (FLAIR) lesion volumes (TLV) and the revised Framingham stroke risk profile (rFSRP), MRI-derived global metrics of cortical thickness and fractional anisotropy (FA), and CSF levels of amyloid ß1-42, p-tau181, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), and neurofilament light. Covariates included age, race, education, body mass index, APOE ε4 carrier status, and evaluation site. Models were performed separately for former football players and a control group of asymptomatic men unexposed to RHI. RESULTS: In 180 former football players (mean age = 57.2, 36% Black), higher log(TLV) had direct associations with the following: higher rFSRP score (B = 0.26, 95% CI 0.07-0.40), higher p-tau181 (B = 0.17, 95% CI 0.01-0.43), lower FA (B = -0.28, 95% CI -0.42 to -0.13), and reduced cortical thickness (B = -0.25, 95% CI -0.45 to -0.08). In 60 asymptomatic unexposed men (mean age = 59.3, 40% Black), there were no direct effects on log(TLV) (rFSRP: B = -0.03, 95% CI -0.48 to 0.57; p-tau181: B = -0.30, 95% CI -1.14 to 0.37; FA: B = -0.07, 95% CI -0.48 to 0.42; or cortical thickness: B = -0.28, 95% CI -0.64 to 0.10). The former football players showed stronger associations between log(TLV) and rFSRP (1,069% difference in estimates), p-tau181 (158%), and FA (287%) than the unexposed men. DISCUSSION: Risk factors and biological correlates of WMH differed between former American football players and asymptomatic unexposed men. In addition to vascular health, p-tau181 and diffusion tensor imaging indices of white matter integrity showed stronger associations with WMH in the former football players. FLAIR WMH may have specific risk factors and pathologic underpinnings in RHI-exposed individuals.


Football , White Matter , Male , Humans , Middle Aged , Amyloid beta-Peptides , Diffusion Tensor Imaging , White Matter/diagnostic imaging , Risk Factors , Biomarkers
4.
Alzheimers Dement ; 20(3): 1827-1838, 2024 Mar.
Article En | MEDLINE | ID: mdl-38134231

INTRODUCTION: Tau is a key pathology in chronic traumatic encephalopathy (CTE). Here, we report our findings in tau positron emission tomography (PET) measurements from the DIAGNOSE CTE Research Project. METHOD: We compare flortaucipir PET measures from 104 former professional players (PRO), 58 former college football players (COL), and 56 same-age men without exposure to repetitive head impacts (RHI) or traumatic brain injury (unexposed [UE]); characterize their associations with RHI exposure; and compare players who did or did not meet diagnostic criteria for traumatic encephalopathy syndrome (TES). RESULTS: Significantly elevated flortaucipir uptake was observed in former football players (PRO+COL) in prespecified regions (p < 0.05). Association between regional flortaucipir uptake and estimated cumulative head impact exposure was only observed in the superior frontal region in former players over 60 years old. Flortaucipir PET was not able to differentiate TES groups. DISCUSSION: Additional studies are needed to further understand tau pathology in CTE and other individuals with a history of RHI.


Brain Injuries, Traumatic , Carbolines , Chronic Traumatic Encephalopathy , Football , Male , Humans , Middle Aged , Chronic Traumatic Encephalopathy/diagnostic imaging , Chronic Traumatic Encephalopathy/pathology , Football/injuries , tau Proteins , Positron-Emission Tomography , Brain Injuries, Traumatic/complications
5.
Cornea ; 2023 Nov 28.
Article En | MEDLINE | ID: mdl-38016014

PURPOSE: ChatGPT is a commonly used source of information by patients and clinicians. However, it can be prone to error and requires validation. We sought to assess the quality and accuracy of information regarding corneal transplantation and Fuchs dystrophy from 2 iterations of ChatGPT, and whether its answers improve over time. METHODS: A total of 10 corneal specialists collaborated to assess responses of the algorithm to 10 commonly asked questions related to endothelial keratoplasty and Fuchs dystrophy. These questions were asked from both ChatGPT-3.5 and its newer generation, GPT-4. Assessments tested quality, safety, accuracy, and bias of information. Chi-squared, Fisher exact tests, and regression analyses were conducted. RESULTS: We analyzed 180 valid responses. On a 1 (A+) to 5 (F) scale, the average score given by all specialists across questions was 2.5 for ChatGPT-3.5 and 1.4 for GPT-4, a significant improvement (P < 0.0001). Most responses by both ChatGPT-3.5 (61%) and GPT-4 (89%) used correct facts, a proportion that significantly improved across iterations (P < 0.00001). Approximately a third (35%) of responses from ChatGPT-3.5 were considered against the scientific consensus, a notable rate of error that decreased to only 5% of answers from GPT-4 (P < 0.00001). CONCLUSIONS: The quality of responses in ChatGPT significantly improved between versions 3.5 and 4, and the odds of providing information against the scientific consensus decreased. However, the technology is still capable of producing inaccurate statements. Corneal specialists are uniquely positioned to assist users to discern the veracity and application of such information.

6.
J Clin Med ; 12(16)2023 Aug 21.
Article En | MEDLINE | ID: mdl-37629457

The gray matter/white matter (GM/WM) boundary of the brain is vulnerable to shear strain associated with mild traumatic brain injury (mTBI). It is, however, unknown whether GM/WM microstructure is associated with long-term outcomes following mTBI. The diffusion and structural MRI data of 278 participants between 18 and 65 years of age with and without military background from the Department of Defense INTRuST study were analyzed. Fractional anisotropy (FA) was extracted at the GM/WM boundary across the brain and for each lobe. Additionally, two conventional analytic approaches were used: whole-brain deep WM FA (TBSS) and whole-brain cortical thickness (FreeSurfer). ANCOVAs were applied to assess differences between the mTBI cohort (n = 147) and the comparison cohort (n = 131). Associations between imaging features and post-concussive symptom severity, and functional and cognitive impairment were investigated using partial correlations while controlling for mental health comorbidities that are particularly common among military cohorts and were present in both the mTBI and comparison group. Findings revealed significantly lower whole-brain and lobe-specific GM/WM boundary FA (p < 0.011), and deep WM FA (p = 0.001) in the mTBI cohort. Whole-brain and lobe-specific GM/WM boundary FA was significantly negatively correlated with post-concussive symptoms (p < 0.039), functional (p < 0.016), and cognitive impairment (p < 0.049). Deep WM FA was associated with functional impairment (p = 0.002). Finally, no significant difference was observed in cortical thickness, nor between cortical thickness and outcome (p > 0.05). Findings from this study suggest that microstructural alterations at the GM/WM boundary may be sensitive markers of adverse long-term outcomes following mTBI.

7.
medRxiv ; 2023 May 02.
Article En | MEDLINE | ID: mdl-37205422

Aim: To harmonize two ascertainment and severity rating instruments commonly used for the clinical high risk syndrome for psychosis (CHR-P): the Structured Interview for Psychosis-risk Syndromes (SIPS) and the Comprehensive Assessment of At-Risk Mental States (CAARMS). Methods: The initial workshop is described in the companion report from Addington et al. After the workshop, lead experts for each instrument continued harmonizing attenuated positive symptoms and criteria for psychosis and CHR-P through an intensive series of joint videoconferences. Results: Full harmonization was achieved for attenuated positive symptom ratings and psychosis criteria, and partial harmonization for CHR-P criteria. The semi-structured interview, named P ositive SY mptoms and Diagnostic Criteria for the C AARMS H armonized with the S IPS (PSYCHS), generates CHR-P criteria and severity scores for both CAARMS and SIPS. Conclusion: Using the PSYCHS for CHR-P ascertainment, conversion determination, and attenuated positive symptom severity rating will help in comparing findings across studies and in meta-analyses.

8.
J Neurotrauma ; 40(7-8): 649-664, 2023 04.
Article En | MEDLINE | ID: mdl-36324218

Military service members are at increased risk for mental health issues, and comorbidity with mild traumatic brain injury (mTBI) is common. Largely overlapping symptoms between conditions suggest a shared pathophysiology. The present work investigates the associations among white matter microstructure, psychological functioning, and serum neuroactive steroids that are part of the stress-response system. Diffusion-weighted brain imaging was acquired from 163 participants (with and without military affiliation) and free-water-corrected fractional anisotropy (FAT) was extracted. Associations between serum neurosteroid levels of allopregnanolone (ALLO) and pregnenolone (PREGNE), psychological functioning, and whole-brain white matter microstructure were assessed using regression models. Moderation models tested the effect of mTBI and comorbid post-traumatic stress disorder (PTSD) and mTBI on these associations. ALLO is associated with whole-brain white matter FAT (ß = 0.24, t = 3.05, p = 0.006). This association is significantly modulated by PTSD+mTBI comorbidity (ß = 0.00, t = 2.50, p = 0.027), although an mTBI diagnosis alone did not significantly impact this association (p = 0.088). There was no significant association between PREGNE and FAT (p = 0.380). Importantly, lower FAT is associated with poor psychological functioning (ß = -0.19, t = -2.35, p = 0.020). This study provides novel insight into a potential common pathophysiological mechanism of neurosteroid dysregulation underlying the high risk for mental health issues in military service members. Further, comorbidity of PTSD and mTBI may bring the compensatory effects of the brain's stress response to their limit. Future research is needed to investigate whether neurosteroid regulation may be a promising tool for restoring brain health and improving psychological functioning.


Brain Concussion , Military Personnel , Neurosteroids , Stress Disorders, Post-Traumatic , White Matter , Humans , White Matter/diagnostic imaging , Diffusion Tensor Imaging , Brain , Brain Concussion/complications , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/complications
9.
Eur J Nucl Med Mol Imaging ; 50(2): 435-452, 2023 01.
Article En | MEDLINE | ID: mdl-36152064

PURPOSE: Flourine-18-flortaucipir tau positron emission tomography (PET) was developed for the detection for Alzheimer's disease. Human imaging studies have begun to investigate its use in chronic traumatic encephalopathy (CTE). Flortaucipir-PET to autopsy correlation studies in CTE are needed for diagnostic validation. We examined the association between end-of-life flortaucipir PET and postmortem neuropathological measurements of CTE-related tau in six former American football players. METHODS: Three former National Football League players and three former college football players who were part of the DIAGNOSE CTE Research Project died and agreed to have their brains donated. The six players had flortaucipir (tau) and florbetapir (amyloid) PET prior to death. All brains from the deceased participants were neuropathologically evaluated for the presence of CTE. On average, the participants were 59.0 (SD = 9.32) years of age at time of PET. PET scans were acquired 20.33 (SD = 13.08) months before their death. Using Spearman correlation analyses, we compared flortaucipir standard uptake value ratios (SUVRs) to digital slide-based AT8 phosphorylated tau (p-tau) density in a priori selected composite cortical, composite limbic, and thalamic regions-of-interest (ROIs). RESULTS: Four brain donors had autopsy-confirmed CTE, all with high stage disease (n = 3 stage III, n = 1 stage IV). Three of these four met criteria for the clinical syndrome of CTE, known as traumatic encephalopathy syndrome (TES). Two did not have CTE at autopsy and one of these met criteria for TES. Concomitant pathology was only present in one of the non-CTE cases (Lewy body) and one of the CTE cases (motor neuron disease). There was a strong association between flortaucipir SUVRs and p-tau density in the composite cortical (ρ = 0.71) and limbic (ρ = 0.77) ROIs. Although there was a strong association in the thalamic ROI (ρ = 0.83), this is a region with known off-target binding. SUVRs were modest and CTE and non-CTE cases had overlapping SUVRs and discordant p-tau density for some regions. CONCLUSIONS: Flortaucipir-PET could be useful for detecting high stage CTE neuropathology, but specificity to CTE p-tau is uncertain. Off-target flortaucipir binding in the hippocampus and thalamus complicates interpretation of these associations. In vivo biomarkers that can detect the specific p-tau of CTE across the disease continuum are needed.


Alzheimer Disease , Brain Injuries, Traumatic , Chronic Traumatic Encephalopathy , Football , Humans , Alzheimer Disease/metabolism , Autopsy , Brain/metabolism , Brain Injuries, Traumatic/complications , Chronic Traumatic Encephalopathy/diagnostic imaging , Chronic Traumatic Encephalopathy/etiology , Chronic Traumatic Encephalopathy/metabolism , Death , Positron-Emission Tomography , tau Proteins/metabolism
10.
Alzheimers Dement ; 19(4): 1260-1273, 2023 04.
Article En | MEDLINE | ID: mdl-35996231

INTRODUCTION: The presentation, risk factors, and etiologies of white matter hyperintensities (WMH) in people exposed to repetitive head impacts are unknown. We examined the burden and distribution of WMH, and their association with years of play, age of first exposure, and clinical function in former American football players. METHODS: A total of 149 former football players and 53 asymptomatic unexposed participants (all men, 45-74 years) completed fluid-attenuated inversion recovery magnetic resonance imaging, neuropsychological testing, and self-report neuropsychiatric measures. Lesion Segmentation Toolbox estimated WMH. Analyses were performed in the total sample and stratified by age 60. RESULTS: In older but not younger participants, former football players had greater total, frontal, temporal, and parietal log-WMH compared to asymptomatic unexposed men. In older but not younger former football players, greater log-WMH was associated with younger age of first exposure to football and worse executive function. DISCUSSION: In older former football players, WMH may have unique presentations, risk factors, and etiologies. HIGHLIGHTS: Older but not younger former football players had greater total, frontal, temporal, and parietal lobe white matter hyperintensities (WMH) compared to same-age asymptomatic unexposed men. Younger age of first exposure to football was associated with greater WMH in older but not younger former American football players. In former football players, greater WMH was associated with worse executive function and verbal memory.


Football , White Matter , Male , Humans , Aged , Middle Aged , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance Imaging/methods , Neuropsychological Tests , Executive Function
11.
Hum Brain Mapp ; 43(8): 2653-2667, 2022 06 01.
Article En | MEDLINE | ID: mdl-35289463

Mild Traumatic brain injury (mTBI) is a signature wound in military personnel, and repetitive mTBI has been linked to age-related neurogenerative disorders that affect white matter (WM) in the brain. However, findings of injury to specific WM tracts have been variable and inconsistent. This may be due to the heterogeneity of mechanisms, etiology, and comorbid disorders related to mTBI. Non-negative matrix factorization (NMF) is a data-driven approach that detects covarying patterns (components) within high-dimensional data. We applied NMF to diffusion imaging data from military Veterans with and without a self-reported TBI history. NMF identified 12 independent components derived from fractional anisotropy (FA) in a large dataset (n = 1,475) gathered through the ENIGMA (Enhancing Neuroimaging Genetics through Meta-Analysis) Military Brain Injury working group. Regressions were used to examine TBI- and mTBI-related associations in NMF-derived components while adjusting for age, sex, post-traumatic stress disorder, depression, and data acquisition site/scanner. We found significantly stronger age-dependent effects of lower FA in Veterans with TBI than Veterans without in four components (q < 0.05), which are spatially unconstrained by traditionally defined WM tracts. One component, occupying the most peripheral location, exhibited significantly stronger age-dependent differences in Veterans with mTBI. We found NMF to be powerful and effective in detecting covarying patterns of FA associated with mTBI by applying standard parametric regression modeling. Our results highlight patterns of WM alteration that are differentially affected by TBI and mTBI in younger compared to older military Veterans.


Brain Concussion , Brain Injuries, Traumatic , Brain Injuries , Military Personnel , Stress Disorders, Post-Traumatic , Veterans , White Matter , Brain/diagnostic imaging , Brain Concussion/diagnostic imaging , Brain Injuries/etiology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Humans , Multivariate Analysis , Stress Disorders, Post-Traumatic/complications , White Matter/diagnostic imaging
12.
Mol Psychiatry ; 27(4): 2052-2060, 2022 04.
Article En | MEDLINE | ID: mdl-35145230

Brain morphology differs markedly between individuals with schizophrenia, but the cellular and genetic basis of this heterogeneity is poorly understood. Here, we sought to determine whether cortical thickness (CTh) heterogeneity in schizophrenia relates to interregional variation in distinct neural cell types, as inferred from established gene expression data and person-specific genomic variation. This study comprised 1849 participants in total, including a discovery (140 cases and 1267 controls) and a validation cohort (335 cases and 185 controls). To characterize CTh heterogeneity, normative ranges were established for 34 cortical regions and the extent of deviation from these ranges was measured for each individual with schizophrenia. CTh deviations were explained by interregional gene expression levels of five out of seven neural cell types examined: (1) astrocytes; (2) endothelial cells; (3) oligodendrocyte progenitor cells (OPCs); (4) excitatory neurons; and (5) inhibitory neurons. Regional alignment between CTh alterations with cell type transcriptional maps distinguished broad patient subtypes, which were validated against genomic data drawn from the same individuals. In a predominantly neuronal/endothelial subtype (22% of patients), CTh deviations covaried with polygenic risk for schizophrenia (sczPRS) calculated specifically from genes marking neuronal and endothelial cells (r = -0.40, p = 0.010). Whereas, in a predominantly glia/OPC subtype (43% of patients), CTh deviations covaried with sczPRS calculated from glia and OPC-linked genes (r = -0.30, p = 0.028). This multi-scale analysis of genomic, transcriptomic, and brain phenotypic data may indicate that CTh heterogeneity in schizophrenia relates to inter-individual variation in cell-type specific functions. Decomposing heterogeneity in relation to cortical cell types enables prioritization of schizophrenia subsets for future disease modeling efforts.


Schizophrenia , Brain , Cerebral Cortex , Endothelial Cells , Humans , Magnetic Resonance Imaging , Multifactorial Inheritance , Schizophrenia/genetics
13.
Alzheimers Res Ther ; 13(1): 136, 2021 08 12.
Article En | MEDLINE | ID: mdl-34384490

BACKGROUND: Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease that has been neuropathologically diagnosed in brain donors exposed to repetitive head impacts, including boxers and American football, soccer, ice hockey, and rugby players. CTE cannot yet be diagnosed during life. In December 2015, the National Institute of Neurological Disorders and Stroke awarded a seven-year grant (U01NS093334) to fund the "Diagnostics, Imaging, and Genetics Network for the Objective Study and Evaluation of Chronic Traumatic Encephalopathy (DIAGNOSE CTE) Research Project." The objectives of this multicenter project are to: develop in vivo fluid and neuroimaging biomarkers for CTE; characterize its clinical presentation; refine and validate clinical research diagnostic criteria (i.e., traumatic encephalopathy syndrome [TES]); examine repetitive head impact exposure, genetic, and other risk factors; and provide shared resources of anonymized data and biological samples to the research community. In this paper, we provide a detailed overview of the rationale, design, and methods for the DIAGNOSE CTE Research Project. METHODS: The targeted sample and sample size was 240 male participants, ages 45-74, including 120 former professional football players, 60 former collegiate football players, and 60 asymptomatic participants without a history of head trauma or participation in organized contact sports. Participants were evaluated at one of four U.S. sites and underwent the following baseline procedures: neurological and neuropsychological examinations; tau and amyloid positron emission tomography; magnetic resonance imaging and spectroscopy; lumbar puncture; blood and saliva collection; and standardized self-report measures of neuropsychiatric, cognitive, and daily functioning. Study partners completed similar informant-report measures. Follow-up evaluations were intended to be in-person and at 3 years post-baseline. Multidisciplinary diagnostic consensus conferences are held, and the reliability and validity of TES diagnostic criteria are examined. RESULTS: Participant enrollment and all baseline evaluations were completed in February 2020. Three-year follow-up evaluations began in October 2019. However, in-person evaluation ceased with the COVID-19 pandemic, and resumed as remote, 4-year follow-up evaluations (including telephone-, online-, and videoconference-based cognitive, neuropsychiatric, and neurologic examinations, as well as in-home blood draw) in February 2021. CONCLUSIONS: Findings from the DIAGNOSE CTE Research Project should facilitate detection and diagnosis of CTE during life, and thereby accelerate research on risk factors, mechanisms, epidemiology, treatment, and prevention of CTE. TRIAL REGISTRATION: NCT02798185.


COVID-19 , Chronic Traumatic Encephalopathy , Neurodegenerative Diseases , Aged , Chronic Traumatic Encephalopathy/diagnosis , Humans , Male , Middle Aged , Pandemics , Reproducibility of Results , SARS-CoV-2
14.
J Magn Reson Imaging ; 54(6): 1819-1829, 2021 12.
Article En | MEDLINE | ID: mdl-34137112

BACKGROUND: Exposure to repetitive head impacts (RHI) is associated with an increased risk of later-life neurobehavioral dysregulation and neurodegenerative disease. The underlying pathomechanisms are largely unknown. PURPOSE: To investigate whether RHI exposure is associated with later-life corpus callosum (CC) microstructure and whether CC microstructure is associated with plasma total tau and neuropsychological/neuropsychiatric functioning. STUDY TYPE: Retrospective cohort study. POPULATION: Seventy-five former professional American football players (age 55.2 ± 8.0 years) with cognitive, behavioral, and mood symptoms. FIELD STRENGTH/SEQUENCE: Diffusion-weighted echo-planar MRI at 3 T. ASSESSMENT: Subjects underwent diffusion MRI, venous puncture, neuropsychological testing, and completed self-report measures of neurobehavioral dysregulation. RHI exposure was assessed using the Cumulative Head Impact Index (CHII). Diffusion MRI measures of CC microstructure (i.e., free-water corrected fractional anisotropy (FA), trace, radial diffusivity (RD), and axial diffusivity (AD)) were extracted from seven segments of the CC (CC1-7), using a tractography clustering algorithm. Neuropsychological tests were selected: Trail Making Test Part A (TMT-A) and Part B (TMT-B), Controlled Oral Word Association Test (COWAT), Stroop Interference Test, and the Behavioral Regulation Index (BRI) from the Behavior Rating Inventory of Executive Function, Adult version (BRIEF-A). STATISTICAL TESTS: Diffusion MRI metrics were tested for associations with RHI exposure, plasma total tau, neuropsychological performance, and neurobehavioral dysregulation using generalized linear models for repeated measures. RESULTS: RHI exposure was associated with increased AD of CC1 (correlation coefficient (r) = 0.32, P < 0.05) and with increased plasma total tau (r = 0.34, P < 0.05). AD of the anterior CC1 was associated with increased plasma total tau (CC1: r = 0.30, P < 0.05; CC2: r = 0.29, P < 0.05). Higher trace, AD, and RD of CC1 were associated with better performance (P < 0.05) in TMT-A (trace, r = 0.33; AD, r = 0.31; and RD, r = 0.28) and TMT-B (trace, r = 0.31; RD, r = 0.34). Higher FA and AD of CC2 were associated with better performance (P < 0.05) in TMT-A (FA, r = 0.36; AD, r = 0.28), TMT-B (FA, r = 0.36; AD, r = 0.27), COWAT (FA, r = 0.36; AD, r = 0.32), and BRI (AD, r = 0.29). DATA CONCLUSION: These results suggest an association among RHI exposure, CC microstructure, plasma total tau, and clinical functioning in former professional American football players. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage: 1.


Football , Neurodegenerative Diseases , White Matter , Corpus Callosum/diagnostic imaging , Diffusion Tensor Imaging , Humans , Middle Aged , Retrospective Studies
15.
Cereb Cortex ; 31(7): 3426-3434, 2021 06 10.
Article En | MEDLINE | ID: mdl-33676369

Younger age at first exposure (AFE) to repetitive head impacts while playing American football increases the risk for later-life neuropsychological symptoms and brain alterations. However, it is not known whether AFE is associated with cortical thickness in American football players. Sixty-three former professional National Football League players (55.5 ± 7.7 years) with cognitive, behavioral, and mood symptoms underwent neuroimaging and neuropsychological testing. First, the association between cortical thickness and AFE was tested. Second, the relationship between clusters of decreased cortical thickness and verbal and visual memory, and composite measures of mood/behavior and attention/psychomotor speed was assessed. AFE was positively correlated with cortical thickness in the right superior frontal cortex (cluster-wise P value [CWP] = 0.0006), the left parietal cortex (CWP = 0.0003), and the occipital cortices (right: CWP = 0.0023; left: CWP = 0.0008). A positive correlation was found between cortical thickness of the right superior frontal cortex and verbal memory (R = 0.333, P = 0.019), and the right occipital cortex and visual memory (R = 0.360, P = 0.012). In conclusion, our results suggest an association between younger AFE and decreased cortical thickness, which in turn is associated with worse neuropsychological performance. Furthermore, an association between younger AFE and signs of neurodegeneration later in life in symptomatic former American football players seems likely.


Athletes , Brain Cortical Thickness , Brain Injuries, Traumatic/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Chronic Traumatic Encephalopathy/diagnostic imaging , Football , Adult , Affect/physiology , Age Factors , Aged , Attention/physiology , Brain Injuries, Traumatic/physiopathology , Cerebral Cortex/pathology , Chronic Traumatic Encephalopathy/physiopathology , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Humans , Magnetic Resonance Imaging , Male , Memory/physiology , Middle Aged , Neuropsychological Tests , Occipital Lobe/diagnostic imaging , Occipital Lobe/pathology , Organ Size , Parietal Lobe/diagnostic imaging , Parietal Lobe/pathology , Psychomotor Performance/physiology
16.
Clin EEG Neurosci ; 51(4): 285-299, 2020 Jul.
Article En | MEDLINE | ID: mdl-32186207

Posttraumatic stress disorder (PTSD) co-occurring with mild traumatic brain injury (mTBI) is common in veterans. Worse clinical outcome in those with PTSD has been associated with decreased serum neurosteroid levels. Furthermore, decreased cortical thickness has been associated with both PTSD and mTBI. However, it is not known whether decreased neurosteroids are associated with decreased cortical thickness in PTSD co-occurring with mTBI. This study included 141 individuals divided into the following groups: (a) mTBI group (n = 32 [10 female, 22 male] veterans with a history of mTBI); (b) PTSD + mTBI group (n = 41 [6 female, 35 male] veterans with current PTSD with a history of mTBI); and (c) control group (n = 68 [35 female, 33 male] control participants), which were acquired through the Injury and Traumatic Stress (INTRuST) Clinical Consortium. Subjects underwent clinical assessment, magnetic resonance imaging at 3 T, and serum neurosteroid quantifications of allopregnanolone (ALLO) and pregnenolone (PREGN). Group differences in cortical thickness and associations between serum neurosteroid levels and cortical thickness were investigated. Cortical thickness was decreased in the PTSD + mTBI group compared with the other groups. In the PTSD + mTBI group, decreased cortical thickness was also associated with lower serum ALLO (right superior frontal cortex) and lower serum PREGN (left middle temporal and right orbitofrontal cortex). Cortical thickness in the middle temporal and orbitofrontal cortex was associated with PTSD symptom severity. There were no significant associations between neurosteroids and cortical thickness in the mTBI or control groups. Decreased cortical thickness in individuals with PTSD + mTBI is associated with decreased serum neurosteroid levels and greater PTSD symptom severity. Causality is unclear. However, future studies might investigate whether treatment with neurosteroids could counteract stress-induced neural atrophy in PTSD + mTBI by potentially preserving cortical thickness.


Brain Concussion , Neurosteroids , Stress Disorders, Post-Traumatic , Veterans , Electroencephalography , Female , Humans , Male
17.
J Psychiatr Res ; 121: 108-117, 2020 02.
Article En | MEDLINE | ID: mdl-31809943

To date, few studies have evaluated the contribution of early life experiences to neurocognitive abnormalities observed in posttraumatic stress disorder (PTSD). Childhood maltreatment is common among individuals with PTSD and is thought to catalyze stress-related biobehavioral changes that might impact both brain structure and function in adulthood. The current study examined differences in brain morphology (brain volume, cortical thickness) and neuropsychological performance in individuals with PTSD characterized by low or high self-reported childhood maltreatment, compared with healthy comparison participants. Data were drawn from the INjury and TRaUmatic STress (INTRuST) Clinical Consortium imaging repository, which contains MRI and self-report data for individuals classified as PTSD positive (with and without a history of mild traumatic brain injury [mTBI]), individuals with mTBI only, and healthy comparison participants. The final sample included 36 individuals with PTSD without childhood maltreatment exposure (PTSD, n = 30 with mTBI), 31 individuals with PTSD and childhood maltreatment exposure (PTSD + M, n = 26 with mTBI), and 114 healthy comparison participants without history of childhood maltreatment exposure (HC). The PTSD + M and PTSD groups demonstrated cortical thinning in prefrontal and occipital regions, and poorer verbal memory and processing speed compared to the HC group. PTSD + M participants demonstrated cortical thinning in frontal and cingulate regions, and poorer executive functioning relative to the PTSD and HC groups. Thus, neurocognitive features varied between individuals with PTSD who did versus did not have exposure to childhood maltreatment, highlighting the need to assess developmental history of maltreatment when examining biomarkers in PTSD.


Adult Survivors of Child Abuse , Cerebral Cortex/pathology , Cognitive Dysfunction/physiopathology , Executive Function/physiology , Stress Disorders, Post-Traumatic/pathology , Stress Disorders, Post-Traumatic/physiopathology , Adult , Biomarkers , Cerebral Cortex/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Databases, Factual , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Stress Disorders, Post-Traumatic/diagnostic imaging , Young Adult
18.
Biol Psychiatry ; 86(7): 523-535, 2019 10 01.
Article En | MEDLINE | ID: mdl-31279534

BACKGROUND: The increased mutational burden for rare structural genomic variants in schizophrenia and other neurodevelopmental disorders has so far not yielded therapies targeting the biological effects of specific mutations. We identified two carriers (mother and son) of a triplication of the gene encoding glycine decarboxylase, GLDC, presumably resulting in reduced availability of the N-methyl-D-aspartate receptor coagonists glycine and D-serine and N-methyl-D-aspartate receptor hypofunction. Both carriers had a diagnosis of a psychotic disorder. METHODS: We carried out two double-blind, placebo-controlled clinical trials of N-methyl-D-aspartate receptor augmentation of psychotropic drug treatment in these two individuals. Glycine was used in the first clinical trial, and D-cycloserine was used in the second one. RESULTS: Glycine or D-cycloserine augmentation of psychotropic drug treatment each improved psychotic and mood symptoms in placebo-controlled trials. CONCLUSIONS: These results provide two independent proof-of-principle demonstrations of symptom relief by targeting a specific genotype and explicitly link an individual mutation to the pathophysiology of psychosis and treatment response.


Affective Disorders, Psychotic/genetics , Glycine Agents/pharmacology , Glycine Dehydrogenase (Decarboxylating)/genetics , Glycine/pharmacology , Psychotic Disorders/genetics , Psychotropic Drugs/pharmacology , Receptors, N-Methyl-D-Aspartate , Adult , DNA Copy Number Variations , Double-Blind Method , Drug Synergism , Drug Therapy, Combination , Female , Glycine/administration & dosage , Glycine Agents/administration & dosage , Humans , Male , Proof of Concept Study , Psychotropic Drugs/administration & dosage , Random Allocation , Single-Case Studies as Topic
19.
Brain Imaging Behav ; 13(3): 725-734, 2019 Jun.
Article En | MEDLINE | ID: mdl-29779184

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts. CTE has been linked to disruptions in cognition, mood, and behavior. Unfortunately, the diagnosis of CTE can only be made post-mortem. Neuropathological evidence suggests limbic structures may provide an opportunity to characterize CTE in the living. Using 3 T magnetic resonance imaging, we compared select limbic brain regional volumes - the amygdala, hippocampus, and cingulate gyrus - between symptomatic former National Football League (NFL) players (n = 86) and controls (n = 22). Moreover, within the group of former NFL players, we examined the relationship between those limbic structures and neurobehavioral functioning (n = 75). The former NFL group comprised eighty-six men (mean age = 55.2 ± 8.0 years) with at least 12 years of organized football experience, at least 2 years of active participation in the NFL, and self-reported declines in cognition, mood, and behavior within the last 6 months. The control group consisted of men (mean age = 57.0 ± 6.6 years) with no history of contact-sport involvement or traumatic brain injury. All control participants provided neurobehavioral data. Compared to controls, former NFL players exhibited reduced volumes of the amygdala, hippocampus, and cingulate gyrus. Within the NFL group, reduced bilateral cingulate gyrus volume was associated with worse attention and psychomotor speed (r = 0.4 (right), r = 0.42 (left); both p < 0.001), while decreased right hippocampal volume was associated with worse visual memory (r = 0.25, p = 0.027). Reduced volumes of limbic system structures in former NFL players are associated with neurocognitive features of CTE. Volume reductions in the amygdala, hippocampus, and cingulate gyrus may be potential biomarkers of neurodegeneration in those at risk for CTE.


Chronic Traumatic Encephalopathy/physiopathology , Limbic System/physiology , Amygdala/pathology , Athletes , Brain Concussion/complications , Chronic Traumatic Encephalopathy/etiology , Cognition Disorders/diagnosis , Football/injuries , Football/physiology , Gyrus Cinguli/pathology , Hippocampus/pathology , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neurodegenerative Diseases/physiopathology
20.
Neuroimage Clin ; 18: 888-896, 2018.
Article En | MEDLINE | ID: mdl-29876273

Objectives: To determine whether or not automated FreeSurfer segmentation of brain regions considered important in repetitive head trauma can be analyzed accurately without manual correction. Materials and methods: 3 T MR neuroimaging was performed with automated FreeSurfer segmentation and manual correction of 11 brain regions in former National Football League (NFL) players with neurobehavioral symptoms and in control subjects. Automated segmentation and manually-corrected volumes were compared using an intraclass correlation coefficient (ICC). Linear mixed effects regression models were also used to estimate between-group mean volume comparisons and to correlate former NFL player brain volumes with neurobehavioral factors. Results: Eighty-six former NFL players (55.2 ±â€¯8.0 years) and 22 control subjects (57.0 ±â€¯6.6 years) were evaluated. ICC was highly correlated between automated and manually-corrected corpus callosum volumes (0.911), lateral ventricular volumes (right 0.980, left 0.967), and amygdala-hippocampal complex volumes (right 0.713, left 0.731), but less correlated when amygdalae (right -0.170, left -0.090) and hippocampi (right 0.539, left 0.637) volumes were separately delineated and also less correlated for cingulate gyri volumes (right 0.639, left 0.351). Statistically significant differences between former NFL player and controls were identified in 8 of 11 regions with manual correction but in only 4 of 11 regions without such correction. Within NFL players, manually corrected brain volumes were significantly associated with 3 neurobehavioral factors, but a different set of 3 brain regions and neurobehavioral factor correlations was observed for brain region volumes segmented without manual correction. Conclusions: Automated FreeSurfer segmentation of the corpus callosum, lateral ventricles, and amygdala-hippocampus complex may be appropriate for analysis without manual correction. However, FreeSurfer segmentation of the amygdala, hippocampus, and cingulate gyrus need further manual correction prior to performing group comparisons and correlations with neurobehavioral measures.


Amygdala/pathology , Hippocampus/pathology , Image Processing, Computer-Assisted , Neuroimaging , Organ Size/physiology , Adult , Aged , Brain Mapping , Football , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuroimaging/methods
...